为神经网络的 dissipativity 的一个新定义在这篇论文被介绍。由构造合适的 Lyapunov functionals 并且使用一些分析技术,足够的条件被给以线性矩阵不平等保证神经网络的 dissipativity 与或没有变化时间的参量的不确定性和 integro 微分的神经网络。数字例子被给说明获得的结果的有效性。
A new definition of dissipativity for neural networks is presented in this paper. By constructing proper Lyapunov functionals and using some analytic techniques, sufficient conditions are given to ensure the dissipativity of neural networks with or without time-varying parametric uncertainties and the integro-differential neural networks in terms of linear matrix inequalities. Numerical examples are given to illustrate the effectiveness of the obtained results.