在传感器进行电位测量的电阻抗成像(EIT)数据采集系统的基础上,通过在粒子群搜索策略中引入量子行为特性,提出一种自适应量子粒子群算法,该算法提高了最优解搜索的成功率。应用于求解EIT逆问题,仿真实验结果表明:与粒子群算法相比,量子粒子群优化算法能有效克服粒子群优化(PSO)算法易出现的早熟收敛问题,收敛速度快,并且能够有效地提高图像分辨率。
On the basis of the electrical impedance tomography(EIT) data acquisition system which uses sensors for potential measurements,an adaptive quantum particle swarm algorithm is proposed by the introduction of the quantum behavior property in the particle swarm search strategy.It improves the success rate of optimal solution search.It is used in solving the EIT inverse problem.The simulation results show that,compared with the particle swarm algorithm,quantum particle swarm optimization algorithm can more effectively overcome the premature convergence problem of particle swarm optimization(PSO) algorithm,convergent speed is fast and can effectively improve the image resolution.