基于熔石英材料对波长为10.6μm的CO2激光具有强吸收作用这一特点,提出采用CO2激光光栅式多次扫描修复熔石英光学元件表面密集分布的划痕和抛光点等缺陷的方法.实验结果表明,在合理的扫描参数下,元件表面的划痕和抛光点等缺陷可被充分地消除.损伤阈值测试结果表明,表面划痕和抛光点等缺陷被完全消除的元件的损伤阈值可回复到或超过基底的损伤阈值.同时结合有限元软件Ansys的模拟结果分析了CO2激光扫描修复及消除元件表面划痕和抛光点等缺陷的过程.本文为消除元件表面划痕和抛光点等缺陷提供了非常有意义的参考.
Based on the fact that fused silica material can strongly absorb 10.6 μm CO2 laser, a method of using CO2 laser multi-time raster scanning to repair the densely distributed scratches and polishing pits is investigated. The experimental results indicate that the scratches and polishing pits can be fully eliminated under the appropriate parameters. The damage threshold testing results also indicate that the damage threshold for fully eliminating scratches and polishing pits can reach or exceed the damage threshold of substrate. Meanwhile, Combining the simulation results obtained by finite element software-Ansys, the processes of the scratches and polishing pits eliminated by CO2 laser are analyzed. The present work is of significance for the study on how to eliminate the scratches and polishing pits on the surface of component.