A singularly perturbed second-order semilinear differential equation with integral boundary conditions is considered. By the method of boundary functions, the conditions under which there exists an internal transition layer for the original problem are established. The existence of spike-type solution is obtained by smoothly connecting the solutions of left and right associated problems, and the asymptotic expansion of the spike-type solution is also presented.
A singularly perturbed second-order semilinear differential equation with integral boundary conditions is considered. By the method of boundary functions, the conditions under which there exists an internal transition layer for the original problem are established. The existence of spike-type solution is obtained by smoothly connecting the solutions of left and right associated problems, and the asymptotic expansion of the spike-type solution is also presented.