位置:成果数据库 > 期刊 > 期刊详情页
基于RBF神经网络分析的微弱电信号预报
  • ISSN号:1008-973X
  • 期刊名称:浙江大学学报(工学版)
  • 时间:0
  • 页码:156-159
  • 语言:中文
  • 分类:TP274[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]中国计量学院理学院,浙江杭州310018, [2]浙江大学化学系,浙江杭州310034, [3]中国计量学院生命科学学院,浙江杭州310018
  • 相关基金:国家自然科学基金资助项目(60671052).
  • 相关项目:网络优化的逆问题及网络改进问题的算法研究
中文摘要:

采用自制双重屏蔽系统(屏蔽室和屏蔽箱结合)和自制的铂金传感器刺入植物茎部接触式微弱电信号的测试方法,对绿萝(Scindpsus aureus)植物的自身电信号进行了测试.利用小波软阙值消噪法对测试数据进行消噪,并进行了时间序列的高斯径向基函数神经网络预测.结果表明,利用径向基函数(RBF)人工神经网络对植物微弱电信号进行短期预测是可行的.预测数据可用作温室和/或塑料大棚生产中建立植物自适应电信号智能自动化控制系统的重要参数.

英文摘要:

The original weak electrical signals in Scindpsus aureus were tested by a touching testing used platinum sensors in a system of self-made double shields. The tested data of the electrical signals were denoised by the wavelet soft-threshold and using Gaussian radial base function (RBF) as the time series at a delayed input window chosen at 50. An intelligent RBF forecasting system was set up to forecast the signals in plants. The result shows that it is feasible to forecast the plant electrical signal for a short period. The forecast data can be used as the important preferences for the intelligent automatic control system based on the adaptive characteristic of plants to achieve the energy saving on agricultural production in the greenhouse and/or the plastic lookum.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《浙江大学学报:工学版》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:浙江大学
  • 主编:岑可法
  • 地址:杭州市浙大路38号
  • 邮编:310027
  • 邮箱:xbgkb@zju.edu.cn
  • 电话:0571-87952273
  • 国际标准刊号:ISSN:1008-973X
  • 国内统一刊号:ISSN:33-1245/T
  • 邮发代号:32-40
  • 获奖情况:
  • 2000年获浙江省科技期刊质量评比二等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:21198