应用基于密度泛函理论的第一性原理,研究Mn原子掺杂在ZnS(111)表面的电子结构和磁性.对于单原子的掺杂组态,替位表面第一层的Zn原子时体系形成能最低,说明该层是最稳定的掺杂位置.体系总磁矩取决于Mn原子的局域环境.而对于双掺杂组态,当Mn与Mn之间呈短程铁磁耦合作用时体系最稳定.这可由Mn原子和近邻S原子的p-d杂化作用解释.此时,体系的居里温度估算值为469 K,明显高于室温,具有理论指导意义.Mn原子和受主半导体之间的相互作用是自旋极化产生的主要原因.计算结果表明,该掺杂材料可以很好的用来制作稀磁半导体,具有良好的应用前景.
With first-principles method based on density functional theory, we studied structural, electronic, and magnetic properties of ZnS( 111 ) surfaces monodoped and bidoped with Mn atoms. In monodoped configuration, the most energetically favorable location of Mn incorporated into ZnS ( 111 ) surfaces is in the first Zn atomic layer. Total magnetic moment depends on local structure of Mn atom. In bidoped configuration, short-range ferromagnetism can be explained with existence of strong p-d hybridization between Mn atom and its nearest neighboring S atoms. A Curie temperature of 469 K higher than room temperature is evaluated. Interaction between doping Mn atoms and host semiconductors is major reason for generation of spin polarization. It shows a prospecting prediction for further study of diluted magnetic semiconductors which may be useful in technological application.