利用第一性原理计算Mn在ZnS(001)表面上几种掺杂位置的形成能、局域分波态密度和磁矩.对Mn在ZnS(001)表面上的三种位置的形成能进行比较,得到两种填隙位置是非常稳定的掺杂位置.分析ZnS(001):Mn各种再构表面的电子态密度和电荷密度分布.结果表明,三种表面模型中,自旋向上的Mn原子的3d态和近邻S原子的3p态都有一定的杂化,并且替代掺杂的Mn和邻近S原子的p-d杂化最明显,形成的共价键最强.而自旋向下的Mn原子的3d态比较局域,受S原子的3p态影响较小.计算了三种掺杂表面的磁矩,并分析计算结果.
First principle calculations are made to study formation energies, partial DOS and magnetic moment of three typical surfaces of ZnS(001):Mn. Two interstitial locations are found more stable as comparing formation energies of Mn at three different locations on ZnS(001):Mn surface. Density of states and electron charge density of three reconstructions in ZnS(001):Mn surface are analyzed. It is found that p-d hybridization between spin up Mn-3d and S-3p orbital exists in three ZnS(001): Mn surface models. The p-d mixing is the strongest as Mn is at substituted location. Since spin down Mn-3d states are relatively local, it is shown that mixing between spin down Mn-3d and S-3p is less. Magnetic moments per supercell are calculated for three surfaces.