Cellulose aerogel, with abundant three-dimensional architecture, has been considered as a class of ideal eco-friendly matrix materials to encapsulate various nanoparticles for synthesis of miscellaneous functional materials. In the present paper, hexagonal single-crystalline MnFe2O4 was fabricated and inserted into the cellulose aerogel using an in situ chemical precipitation method. The as-prepared MnFe2O4 nanoparticles were well dispersed and immobilized in the micro/nanoscale pore structure of the aerogel, and exhibited superparamagnetic behavior. In addition, the nanocomposite was easily actuated under the effect of an external magnetic field, revealing its strong magnetic responsiveness.Combined with the advantages of environmental benefits,facile synthesis method, strong magnetic responsiveness,and unique structural feature, this class of MnFe2O4/cellulose aerogel nanocomposite has possible uses for applications such as magnetically actuated adsorbents.
Cellulose aerogel, with abundant three-dimensional architecture, has been considered as a class of ideal eco-friendly matrix materials to encapsulate various nanoparticles for synthesis of miscellaneous functional materials. In the present paper, hexagonal single-crystalline MnFe2O4 was fabricated and inserted into the cellulose aerogel using an in situ chemical precipitation method. The as-prepared MnFe2O4 nanoparticles were well dispersed and immobilized in the micro/nanoscale pore structure of the aerogel, and exhibited superparamagnetic behavior. In addition, the nanocomposite was easily actuated under the effect of an external magnetic field, revealing its strong magnetic responsiveness. Combined with the advantages of environmental benefits, facile synthesis method, strong magnetic responsiveness, and unique structural feature, this class of MnFe2O4/cellulose aerogel nanocomposite has possible uses for applications such as magnetically actuated adsorbents.