位置:成果数据库 > 期刊 > 期刊详情页
局部加权混合核偏最小二乘算法及其在软测量中的应用
  • ISSN号:1002-0411
  • 期刊名称:《信息与控制》
  • 时间:0
  • 分类:TP274[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:江南大学教育部轻工过程先进控制重点实验室,江苏无锡214122
  • 相关基金:国家自然科学基金资助项目(61273070);江苏高校优势学科建设工程资助项目
中文摘要:

针对化工过程中的数据样本缺失的问题,本文基于改进的K近邻算法对样本数据缺失值补全的方法进行了研究,阐述了K近邻补全算法的基本思路,并针对K近邻补全算法在缺失数据的K个最近邻的选择上可能存在的偏好,提出了一种改进的数据补全算法,有效的解决了K近邻补全算法在近邻选取上的偏向性.根据K近邻补全算法选取的K个近邻数据与缺失数据之间的距离,对K个近邻作加权,使得补全的数据更趋合理.仿真实验证明:改进的K近邻补全算法可以对样本的缺失部分进行更加有效的补全,从而扩展了软测量建模可用的样本数量.

英文摘要:

In view of the problem of the missing data in chemical process, this article studies a method for missing data completion based on theK-neighbor algorithm, and expounds the basic idea ofK-neighbor completion, proposes an improved method of completion data to solve the problem about nearest neighbor algorithm selection bias effectively. According to the distance between the neighboring data and missing data, the weights ofK-neighbors are distributed to make the completion of data more reasonable. The simulation results show that the improved nearest neighbor completion algorithm can effectively estimate the missing part of samples so that the sample set can be expanded.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《信息与控制》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国自动化学会 中国科学院沈阳自动化研究所
  • 主编:王天然
  • 地址:沈阳市南塔街114号
  • 邮编:110016
  • 邮箱:xk@sia.cn
  • 电话:024-23970049
  • 国际标准刊号:ISSN:1002-0411
  • 国内统一刊号:ISSN:21-1138/TP
  • 邮发代号:
  • 获奖情况:
  • 全国优秀期刊三等奖,中科院优秀期刊三等奖,辽宁省优秀期刊一等奖
  • 国内外数据库收录:
  • 美国数学评论(网络版),荷兰文摘与引文数据库,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:12960