位置:成果数据库 > 期刊 > 期刊详情页
基于SVM的苯酚浓度半监督软测量方法
  • ISSN号:1001-4160
  • 期刊名称:《计算机与应用化学》
  • 时间:0
  • 分类:TP274[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:江南大学教育部轻工过程先进控制重点实验室,江苏无锡214122
  • 相关基金:国家自然科学基金项目(61273070); 江苏省高校优势学科建设工程资助项目
中文摘要:

为提高对工况复杂的工业过程进行软测量建模的模型精度和泛化能力,提出了一种基于改进Bagging算法的高斯过程集成软测量建模方法。该算法采用高斯过程回归算法建立集成学习模型的基学习器,并在Bagging算法对训练样本重采样生成基学习器训练子集的基础上,采用基于正则化互信息的特征排序指标进行基学习器的输入特征抽取,实现有监督的特征扰动,从而改善学习器的差异度。待测样本进行软测量估计时,根据各高斯过程基学习器输出的方差自适应地选择基学习器进行集成输出。采用工业双酚A生产装置反应器的现场数据建模仿真,结果表明该方法是有效的。

英文摘要:

In order to improve the accuracy and generalization ability of soft-sensor for complex industrial process, a Gaussian process ensemble soft-sensor modeling algorithm based on the improved bagging algorithm is proposed. This algorithm uses Gaussian process regression algorithm to build base learners and the resample method of bagging algorithm to form training subsets of base learners. A criteria for feature ordering base on normalized mutual information is proposed with selecting input features of base learners, which can implement supervised feature perturbance in the ensemble modeling for the sake of improving the diversity between base learners. When estimating the output of the test sample according to the output variances given by Gaussian process base learners, several base learners are selected adaptively to calculate the output of ensemble model. A soft-sensor modeling simulation using the data from the reactors of industrial Bisphenol-A production units shows the effectiveness of the algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机与应用化学》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学院过程工程研究所
  • 主编:王基铭
  • 地址:北京中关村北二街1号
  • 邮编:100080
  • 邮箱:jshx@home.ipe.ac.cn
  • 电话:010-62558482
  • 国际标准刊号:ISSN:1001-4160
  • 国内统一刊号:ISSN:11-3763/TP
  • 邮发代号:82-500
  • 获奖情况:
  • 1991年中国科学院优秀期刊三等奖,2000年中国科学院优秀期刊三等奖,1998年中国科技期刊影响因子工程类第二名,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2000版)
  • 被引量:9060