设D={z∈C:|z|〈1}是复平面中的单位圆盘,H(D)是D上的解析函数空间。利用D到自身的解析映射φ和解析函数g∈H(D),作者定义了算子W'φ,gf=g(f?φ)',然后运用φ与g 在D 上的边界性质刻画了 Bergman 型空间到 Bloch 型空间上算子W'φ,gf =g(f?φ)'的有界性和紧性。
Let D={z∈C:|z|〈1}be the open unit disk in the complex plane C and let H(D)be the space of all analytic functions on D .Forφan analytic self-map of D and g∈H(D),the authors intro-duce a operator on H(D)byW'φ,gf=g(foφ)'.Then,by using some growth properties of the inducing mapsφand g to the boundary of D ,the authors characterize the bounded and compact this operator from Bergman-type spaces to Bloch-type spaces.