本文研究单位圆盘上Bergman型空间到Zygmund型空间上的一类推广的Volterra复合算子.利用符号函数φ和g刻画这类算子的有界性、紧性,并计算其本性范数.
In this paper,we introduce a generalized Volterra composition operator on H(D) by Jφ,g^(n) f(z) =∫0^z(f^n°φ)(ξ)(g°φ)(ξ)dξ.By using the maps ? and g,we characterize the bound-edness and compactness of this operator from Bergman-type space to weighted Zygmund space and weighted Bloch space.We also obtain an asymptotic expression of the essential norm for this operator.