液体流动是热水的矿化作用的不可分的部分,并且它的分析和描述组成一个矿化作用模型的重要部分。矿化作用的水动力学学习处理分析驱动力,液体压力政体,液体流动率和方向,并且他们与矿化作用的本地化的关系。这份报纸考察矿化作用的水动力学研究的原则和方法,并且为矿石沉积物研究和矿物质探索讨论他们的意义和限制。流动可能与液体过压,地志的消除,构造变丑,和液体密度有关的液体的驱动力由于加热或咸度变化变化,取决于特定的地质的环境和矿化作用过程。学习方法可以被分类进三种类型,放大了(领域) 观察,显微镜的分析,并且数字建模。放大了的特征陈述语气显著地 overpressured (特别 lithostatic 或 supralithostatic ) 液体系统包括水平静脉,沙注射堤,和水力的角砾岩。显微镜的研究,特别液体包括的 microthermometry 和液体包括飞机(联邦信息处理标准) 的 microthermometry 能关于液体温度,压力,和液体结构的关系提供重要信息,因此抑制液体流动模型。数字建模能被执行解决管理液体流动,热转移,岩石变丑和化学反应的部分微分方程,以便模仿液体的分发在 2D 或 3D 空间并且整个时间的压力,温度,液体流动率和方向,和矿物质降水或溶解。矿化作用的水动力学研究的结果能提高我们热水的沉积物的形成过程的理解,并且能在矿物质探索直接或间接地被使用。
Fluid flow is an integral part of hydrothermal mineralization, and its analysis and characterization constitute an important part of a mineralization model. The hydrodynamic study of mineralization deals with analyzing the driving forces, fluid pressure regimes, fluid flow rate and direction, and their relationships with localization of mineralization. This paper reviews the principles and methods of hydrodynamic studies of mineralization, and discusses their significance and limitations for ore deposit studies and mineral exploration. The driving forces of fluid flow may be related to fluid overpressure, topographic relief, tectonic deformation, and fluid density change due to heating or salinity variation, depending on specific geologic environments and mineralization processes. The study methods may be classified into three types, megascopic (field) observations, microscopic analyses, and numerical modeling. Megascopic features indicative of significantly overpressured (especially lithostatic or supralithostatic) fluid systems include horizontal veins, sand injection dikes, and hydraulic breccias. Microscopic studies, especially microthermometry of fluid inclusions and combined stress analysis and microthermometry of fluid inclusion planes (FIPs) can provide important information about fluid temperature, pressure, and fluid-structural relationships, thus constraining fluid flow models. Numerical modeling can be carried out to solve partial differential equations governing fluid flow, heat transfer, rock deformation and chemical reactions, in order to simulate the distribution of fluid pressure, temperature, fluid flow rate and direction, and mineral precipitation or dissolution in 2D or 3D space and through time. The results of hydrodynamic studies of mineralization can enhance our understanding of the formation nrocesses of hvdrothermal denosits, and can be used directly or indirectly in mineral exnloration.