本文利用不动点指数理论证明了如下非线性二阶Robin问题{u″(t)-k2u(t)+λf(u(t))=0,t∈(0,1),k≠0, u′(0)=0,u(1)=0多个正解的存在性,其中f:[0,∞)→[0,∞)为连续函数且有多个零点,λ〉0为参数.
In this paper, we use the fixed point index theory to show the existence of multiple positive so- lutions for the following second order Robin problems:{u″(t)-k2u(t)+λf(u(t))=0,t∈(0,1),k≠0, u′(0)=0,u(1)=0 wher f:[0,∞)→[0,∞) is continuous and has multiple zeros, ,λ 〉 0 is a parameter.