本文研究了一类非线性二阶常微分方程Dirichlet边值问题正解的存在性,其中f:[0,1]×[0,∞)→[0,∞)连续,a(t):[0,1]-[0,∞)连续,主要结果的证明基于锥拉伸与压缩不动点定理.
In this paper, we study the existence of positive solutions for a class of nonlinear second-order Dirichlet problem where f:[0,1]×[0,∞)→[0,∞)is continuous,a(t):[0,1]-[0,∞)is continuous. The proof of the main results is based on the fixed-point theorem of cone expansion -compression.