获得了二阶半正椭圆微分方程Δu+λg(|x|)f(u)=0,R_1〈|x|〈R2,在Dirichlet和Robin边界条件下径向正解的存在性,其中g∈C([R1,R2],[0,+∞)),f∈C([0,+∞),R)。主要结果的证明基于锥上的不动点定理。
We consider the existence of radial positive solutions of second-order semi-positone elliptic differential equation Δu+λg(|x|)f(u)=0,R_1〈|x|〈R2,with Dirichlet and Robin boundary conditions, where g∈C([R1,R2],[0,+∞)),f∈C([0,+∞),R).The proof of the main results are based on the fixed point theorems in cones.