用不动点指数理论,考虑一类非线性二阶差分方程Robin问题{-△~2u(t-1)=λf(u(t)),t∈Z[1,T-1],△u(0)=0,u(T)=0多个正解的存在性,其中:Z[1,T-1]={1,2,…,T-1};f:[0,∞)→[0,∞)为连续函数且有多个零点;λ〉0为参数在一定的假设条件下,讨论其非线性项零点数与问题解数之间的关系.
Using the fixed point index theory,the author considered the existence of multiple positive solutions for a class of second-order difference equation with Robin problems{-△~2u(t-1)=λf(u(t)),t∈Z[1,T-1],△u(0)=0,u(T)=0where Z[1,T-1]={1,2,…,T-1};f:[0,∞)→[0,∞) is continuous functions with multiple zeros,λ 0 is a parameter.Under certain assumptions,the author discussed the relationship between the nutnber of zeros of nonlinear term and the nutnber of the solutions of the problems.