位置:成果数据库 > 期刊 > 期刊详情页
基于支持向量机的欠定盲分离
  • ISSN号:1009-5896
  • 期刊名称:《电子与信息学报》
  • 时间:0
  • 分类:TN911.7[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]华南理工大学电子与信息学院,广州510640
  • 相关基金:国家自然科学基金重点项目(U0635001)和国家自然科学基金f60505005,60674033)资助课题
中文摘要:

该文提出了信号稀疏性的新度量方式,在估算出有效源信号的个数后,提取源信号到达方向角度的特征作为训练样本,利用支持向量机理论构造分类超平面,从而实现对观测信号的最优分类。采用加权系数法获得每一类信号的聚类中心,其中对系数权重的学习是自适应的,同时避免了K-均值聚类等方法对初值的敏感性。此外,针对大规模样本点,该文还提供了在线算法。仿真效果说明了此方法的稳定性和鲁棒性。

英文摘要:

A new sparse measure of signals is proposed in this paper. After the number of efficient sources is estimated, the observations are classified using Support Vector Machine (SVM) trained through samples which are constructed by the direction angles of sources. Each clustering center is obtained based on the sum of samples belong to the same class with different weights which are adjusted adaptively. It gets out of the trap of the initial values which interfere k-mean clustering seriously. Furthermore, the online algorithm is proposed for large scale samples. Simulations show the stability and robustness of the methods.

同期刊论文项目
期刊论文 28 会议论文 10 专利 2
同项目期刊论文
期刊信息
  • 《电子与信息学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院电子学研究所 国家自然科学基金委员会信息科学部
  • 主编:朱敏慧
  • 地址:北京市北四环西路19号
  • 邮编:100190
  • 邮箱:jeit@mail.ie.ac.cn
  • 电话:010-58887066
  • 国际标准刊号:ISSN:1009-5896
  • 国内统一刊号:ISSN:11-4494/TN
  • 邮发代号:2-179
  • 获奖情况:
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:24739