分析了金属板料激光冲击成形的加工过程,为解决不同实验参数下金属板料变形量难以控制,实验参数难以优化的问题,提出了基于神经网络的控制板料变形量的方法,建立了激光加工参数与板料最大变形量之间的神经网络模型,编写了相应的控制软件,并应用该模型对SUS304,LD31,TA2和Al-Mg 4种不同板料在不同实验条件下进行冲击实验。结果表明,采用该方法可有效地优化冲击实验参数,控制板料变形量。
The mechanical process of laser shock forming for sheet metal was analyzed.A method based on neural network was presented to control sheet metal deformation for solving the problems of controlling sheet metal deformation and optimizing experimental parameters under different conditions.The neural network model was proposed between laser process parameters and sheet maximum deformation and the corresponding software was compiled.The model was applied to laser forming experiments for SUS304,LD31,TA2 and Al-Mg under different parameters.Results show that this method is efficient in optimizing experimental parameters and controlling sheet deformation.