位置:成果数据库 > 期刊 > 期刊详情页
基于粗糙集和粒子群优化神经网络的智能决策方法
  • ISSN号:1000-1220
  • 期刊名称:《小型微型计算机系统》
  • 时间:0
  • 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]北京航空航天大学经济管理学院,北京100083, [2]五邑大学系统科学与技术研究所,广东江门529020
  • 相关基金:国家自然科学基金项目(70471074)资助.
作者: 朱帮助[1,2]
中文摘要:

针对多属性决策中的高维、非线性问题,提出一种基于粗糙集和粒子群优化神经网络的智能多属性决策方法.该方法利用粗糙集对多属性决策问题的条件属性进行约简,利用粒子群算法训练神经网络的权重和阈值形成粒子群优化神经网络模型,约简后的属性数据进入粒子群优化神经网络的智能决策系统.实证结果表明,该方法具有较好的泛化能力,与标准支持向量机、遗传神经网络等方法相比,该方法具有一定的优势.

英文摘要:

For solving the high dimensional and nonlinear problems of multiple attribute decision making ( MADM ), in this paper, an intelligent method based on rough sets( RS ) ,particle swarm optimization( PSO ) and artificial neural network ( ANN ), RSPSOANN ,is proposed. In this hybrid approach,RS is used for attribute selection in order to reduce the model complexity of ANN and improve the speed of ANN, PSO is used to train the weights of ANN to constitute a PSOANN model, and then the reduced data is introduced into PSOANN to obtain the results of decision making. The empirical results reveal that RSPSOANN method has understanding forecasting ability. Compared with the standard SVM and GAANN ( training artificial neural network with genetic algorithm), RSPSOANN has some superiority in predicting accuracy.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《小型微型计算机系统》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院沈阳计算技术研究所
  • 主编:林浒
  • 地址:沈阳市浑南新区南屏东路16号
  • 邮编:110168
  • 邮箱:xwjxt@sict.ac.cn
  • 电话:024-24696120 024-24696190-8870
  • 国际标准刊号:ISSN:1000-1220
  • 国内统一刊号:ISSN:21-1106/TP
  • 邮发代号:8-108
  • 获奖情况:
  • 中国自然科学核心期刊,中国科学引文数据库来源期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:23212