星际间的吃惊能极大地扰乱地球的磁气圈和电离层,引起在 geosynchronous 轨道的磁场和血浆的时间、空间的变化。在这篇论文,我们使用磁场数据去从 1997~2007 的卫星和从 1997~2004 的 LANL 卫星上的 MPA 的血浆数据转在 geosynchronous 学习磁场和血浆( 0.03 45 keV )的性质( 6.6 R 在 3 个小时以内的 E )以前并且通过案例研究和迭加的历元分析在在 geosynchronous 的吃惊前面的到达以后转。它被发现那在行星的光面(8 16 副) 上显著地在 geosynchronous 轨道,磁场大小,以及 GSM BZ 部件增加跟随吃惊前面的到达,当时 B Y 部件没几乎在吃惊前后有零钱影响。响应星际间的吃惊,质子与 0.7 厘米 −3 的典型数字密度相比与 1.2 厘米 −3, 的山峰数字密度变得稠密得多。质子温度严厉地增加,主要在黄昏和夜里上站在一起。电子,密度与 2.0 厘米 −3 的山峰数字密度在夜里方面上戏剧性地增加。在星际间的吃惊影响以后的推断的 ionospheric O + 密度在黄昏方面上到达 1.2 厘米 −3 的最大的价值并且展出清楚的黎明黄昏不对称现象。质子的温度的 anisotropy 的山峰在中午部门被定位,并且 anisotropy 向黎明和黄昏方面减少。温度 anisotropy 的最小在夜里方面上。这被建议电磁的离子回旋加速器(位) 波浪和 whistler 波浪能被质子和电子温度 anisotropy 分别地刺激。计算电磁的离子回旋加速器波浪(位) 在有 0.8 Hz,和向黎明的波浪紧张减少的频率价值的日子方面(8 16 副) 和黄昏方面上强烈,最小的价值能在夜里方面上被发现。计算电子 whistler 波浪与 2 kHz 的价值在日子定位方面(8 16 副) 。
Interplanetary shock can greatly disturb the Earth's magnetosphere and ionosphere, causing the temporal and spatial changes of the magnetic field and plasmas at the geosynchronous orbit. In this paper, we use the magnetic field data of GOES satellites from 1997 to 2007 and the plasma data of MPA on the LANL satellites from 1997 to 2004 to study the properties of magnetic field and plasma (0.03-45 keV) at the geosynchronous orbit (6.6 RE) within 3 hours before and after the arrival of shock front at the geosynchronous orbit through both case study and superposed epoch analysis. It is found that following the arrival of shock front at the geosynchronous orbit, the magnetic field magnitude, as well as GSM Bzcomponent increases significantly on the dayside (8-16 LT), while the By component has almost no change before and after shock impacts. In response to the interplanetary shock, the proton becomes much denser with a peak number density of 1.2 cm^-3, compared to the typical number density of 0.7 cm^-3. The proton temperature increases sharply, predominantly on the dusk and night side. The electron, density increases dramatically on the night side with a peak number density of 2.0 cm^-3. The inferred ionospheric O^+ density after the interplanetary shock impact reaches the maximum value of 1.2 cm^-3 on the dusk side and exhibits the clear dawn-dusk asymmetry. The peak of the anisotropy of proton's temperature is located at the noon sector, and the anisotropy decreases towards the dawn and dusk side. The minimum of temperature anisotropy is on the night side. It is suggested that the electromagnetic ion cyclotron (EMIC) wave and whistler wave can be stimulated by the proton and electron temperature anisotropy respectively. The computed electromagnetic ion cyclotron wave (EMIC) intense on the day side (8--16 LT) with a frequency value of 0.8 Hz, and the wave intensity decreases towards the dawn and dusk side, the minimum value can be found on the night side. The computed electron whistler