在凡·艾伦放射带的精力充沛的电子和离子是最重要的空间天气威胁。理解这些精力充沛的粒子怎么在凡·艾伦放射带以内被加速是在空间物理的主要挑战之一。这份报纸由频率(ULF ) 波浪在内部磁气圈由星际间的吃惊刺激了的 ultralow 在漂亮电子和精力充沛的离子的快加速上考察最近的进步。因为电子回旋加速器回声能容易发生在 VLF 频率范围,很低的频率(VLF ) 波浪粒子相互作用被认为是主要电子加速机制之一。用四簇太空船观察,最近,我们发现了那,在星际间的震动影响以后地球磁气圈,在放射带的精力充沛的电子几乎立即被加速并且继续加速一些小时。为传统的加速机制的时间规模(一些天) ,基于 VLF 波浪粒子相互作用到加速电子到相对论的精力,太长,不能解释我们的观察。而且,我们发现了那星际间的震动或太阳的风压力脉搏,与甚至小的动态压力变化,能在放射带动力学起一个非可以忽略的作用。和地球磁气圈的星际间的震动相互作用包括精力充沛的粒子加速表明许多基本空间物理现象。在对星际间的吃惊影响作出回应的放射带的精力充沛的电子的快加速的机制由三作出贡献的部分组成:(1 ) 起始的断热的加速由于强壮的吃惊相关的磁场压缩;(2 ) 由飘移反响的加速列在后面, poloidal ULF 波浪在不同 L 壳激动;并且(3 ) 由于快速抑制,电场与 ULF 联系了的粒子加速飘动。因为他们在这个周期的第一一半获得更多的精力,粒子比他们在第二输的最后得到网加速。结果在这报导纸在在地球凡·艾伦放射带理解精力充沛的粒子的加速上扔了一盏新灯。这研究的结果能同样被用于和另外的行星例如的星际间的吃惊相互作用水银,木星,农神,天王星和尼普顿,和有磁场的另外的天体物理学的目标。
Energetic electrons and ions in the Van Allen radiation belt are the number one space weather threat. Understanding how these energetic particles are accelerated within the Van Allen radiation belt is one of the major challenges in space physics. This paper reviews the recent progress on the fast acceleration of "killer" electrons and energetic ions by ultralow frequency (ULF) waves stimulated by the interplanetary shock in the inner magnetosphere. Very low frequency (VLF) wave-particle interaction is consid- ered to be one of the primary electron acceleration mechanisms because electron cyclotron resonances can easily occur in the VLF frequency range. Recently, using four Cluster spacecraft observations, we have found that, after interplanetary shocks impact the Earth's magnetosphere, energetic electrons in the radiation belt are accelerated almost immediately and continue to accelerate for a few hours. The time scale (a few days) for traditional acceleration mechanisms, based on VLF wave-particle interactions to ac- celerate electrons to relativistic energies, is too long to explain our observations. Furthermore, we have found that interplanetary shocks or solar wind pressure pulses, with even small dynamic pressure changes, can play a non-negligible role in radiation belt dynamics. Interplanetary shocks interaction with the Earth's magnetosphere manifests many fundamental space physics phenomena including energetic particle acceleration. The mechanism of fast acceleration of energetic electrons in the radiation belt responding to interplanetary shock impacts consists of three contributing parts: (1) the initial adiabatic acceleration due to strong shock-related magnetic field compression; (2) followed by the drift-resonant acceleration with poloidal ULF waves excited at different L-shells; and (3) particle acceleration due to the quickly damping electric fields associated with ULF waves. Particles end up with a net acceleration because they gain more energy in the first half o