This paper proposes a new asymptotic attitude tracking controller for an underactuated 3-degree-of-freedom (DOF) laboratory helicopter system by using a nonlinear robust feedback and a neural network (NN) feedforward term. The nonlinear robust control law is developed through a modified inner-outer loop approach. The application of the NN-based feedforward is to compensate for the system uncertainties. The proposed control design strategy requires very limited knowledge of the system dynamic model, and achieves good robustness with respect to system parametric uncertainties. A Lyapunov-based stability analysis shows that the proposed algorithms can ensure asymptotic tracking of the helicopter's elevation and travel motion, while keeping the stability of the closed-loop system. Real-time experiment results demonstrate that the controller has achieved good tracking performance.
This paper proposes a new asymptotic attitude tracking controller for an underactuated 3-degree-of-freedom (DOF) laboratory helicopter system by using a nonlinear robust feedback and a neural network (NN) feedforward term. The nonlinear robust control law is developed through a modified inner-outer loop approach. The application of the NN-based feedforward is to compensate for the system uncertainties. The proposed control design strategy requires very limited knowledge of the system dynamic model, and achieves good robustness with respect to system parametric uncertainties. A Lyapunov-based stability analysis shows that the proposed algorithms can ensure asymptotic tracking of the helicopter's elevation and travel motion, while keeping the stability of the closed-loop system. Real-time experiment results demonstrate that the controller has achieved good tracking performance.