位置:成果数据库 > 期刊 > 期刊详情页
Reciprocal Cloaking Algorithm for Spatial K-Anonymity
  • ISSN号:1000-1239
  • 期刊名称:《计算机研究与发展》
  • 时间:0
  • 分类:TP309.2[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]College of Information Science &Engineering, Yanshan University, Qinhuangdao 066004, China, [2]School of Computer Science & Technology, Donghua University, Shanghai 200051, China
  • 相关基金:National Natural Science Foundation of China (No. 61070032)
中文摘要:

Mobile devices with global positioning capabilities allow users to retrieve points of interest (POI) in their proximity. Due to the nature of spatial queries, location-based service (LBS) needs the user position in order to process requests. On the other hand, revealing exact user locations to LBS may pinpoint their identities and breach their privacy. Spatial K-anonymity (SKA) exploits the concept of K-anonymity in order to protect the identity of users from location-based attacks. However, existing reciprocal methods rely on a specialized data structure. In contrast, a reciprocal algorithm was proposed using existing spatial index on the user locations. At the same time, an adjusted median splits algorithm was provided. Finally, according to effectiveness (i.e., anonymizing spatial region size) and efficiency (i.e., construction cost), the experimental results verify that the proposed methods have better performance. Moreover, since using employ general-purpose spatial indices, the proposed method supports conventional spatial queries as well.

英文摘要:

Mobile devices with global positioning capabilities allow users to retrieve points of interest (POI) in their proximity. Due to the nature of spatial queries, location-based service (LBS) needs the user position in order to process requests. On the other hand, revealing exact user locations to LBS may pinpoint their identifies and breach their privacy. Spatial K-anonymity (SKA) exploits the concept of K-anonymity in order to protect the identity of users from location-based attacks. However, existing reciprocal methods rely on a specialized data structure. In contrast, a reciprocal algorithm was proposed using existing spatial index on the user locations. At the same time, an adjusted median splits algorithm was provided. Finally, according to etTectiveness (i. e., anonymizing spatial region size) and efficiency (i. e. , construction cost), the experimental results verify that the proposed methods have better performance. Moreover, since using employ general.purpose spatial indices, the proposed method supports conventional spatial queries as well.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机研究与发展》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院计算技术研究所
  • 主编:徐志伟
  • 地址:北京市科学院南路6号中科院计算所
  • 邮编:100190
  • 邮箱:crad@ict.ac.cn
  • 电话:010-62620696 62600350
  • 国际标准刊号:ISSN:1000-1239
  • 国内统一刊号:ISSN:11-1777/TP
  • 邮发代号:2-654
  • 获奖情况:
  • 2001-2007百种中国杰出学术期刊,2008中国精品科...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:40349