位置:成果数据库 > 期刊 > 期刊详情页
一类带有扩散和B-D反应项的病毒模型的稳定性分析
  • ISSN号:1005-3085
  • 期刊名称:《工程数学学报》
  • 时间:0
  • 分类:O175.26[理学—数学;理学—基础数学]
  • 作者机构:[1]陕西师范大学数学与信息科学学院,西安710062
  • 相关基金:国家自然科学基金(11271236);中央高校基本科研业务费专项资金(GK201302025)
中文摘要:

本文研究了齐次Neumann边界条件下带有扩散和B-D反应项病毒模型的平衡解渐近稳定性。利用弱耦合抛物不等式组的最大值原理,给出了模型解的先验估计。利用赫尔维茨(Hurwitz)定理,分析了平衡解的局部渐近稳定性。结果表明:当基本再生数大于1时,地方病平衡态局部渐近稳定;当基本再生数小于1时,无病平衡态局部渐近稳定。同时,利用构造上下解及其单调迭代序列的方法证明了无病平衡解的全局渐近稳定性,该结果表明:当控制细胞生成率或者感染率或者感染细胞裂解率充分小时,无病平衡解的全局渐近稳定。

英文摘要:

A viral dynamics model with diffusion and B-D functional response under homo-geneous Neumann boundary condition is investigated in this paper, in which the stabilities of equilibria are analyzed. A priori estimate is proved by the maximum principle of the coupled parabolic inequalities. Based on the Hurwitz theorem, it is proved that the endemic equilibrium is locally stable when the basic reproductive number is greater than one and the disease-free equilibrium is locally stable when it is less than one. Furthermore, through constructing upper and lower solutions to the problem and establishing its associated monotone iterative sequences, we prove the global stability of the disease-free solution. The result shows that if the recruit-ment rate or the contact rate of the susceptible population or the resolution ratio of the infected compartment is small enough, the disease-free solution is globally stable.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《工程数学学报》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:西安交通大学
  • 主编:李大潜
  • 地址:西宁市咸宁西路28号西安交通大学数学与统计学院
  • 邮编:710049
  • 邮箱:jgsx@mail.xjtu.edu.cn
  • 电话:029-82667877
  • 国际标准刊号:ISSN:1005-3085
  • 国内统一刊号:ISSN:61-1269/O1
  • 邮发代号:
  • 获奖情况:
  • 《中文核心期刊要目总览》核心期刊,《中国科学引文数据库》核心期刊,《中国数学文摘》核心期刊,陕西省优秀科技期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:6741