研究一类在Dirichlet边界条件下带有交叉扩散和修正的Leslie-Gower与HollingⅡ反应项的捕食-食饵模型.分别利用极大值原理、Poincaré不等式和度理论,得到正解的先验估计以及正解存在的必要条件和充分条件.进而得出,当正解存在时,参数a〉λ1,b〉λ1;当参数a〉λ1,λ1(-b1+βθa)〈0,b〉λ1,λ1(ck2θb-adk1/dk1+dk1k2θb)〈0时,正解存在.
A predator-prey model with cross-diffusion and modified Leslie-Gower type and Holling Ⅱ functional response under Dirichlet boundary conditions is studied.A priori estimate of positive solutions,a necessary and sufficient condition of the existence for positive solutions are derived by making use of maximum principle,Poincaré's inequality and degree theory.It is shown that if the models have positive solutions,then a 〉 λ1,b 〉 λ1;while a 〉 λ,1,(-b1+βθa)〈0,b〉λ1,λ1(ck2θb-adk1/dk1+dk1k2θb)〈0,the models have positive solutions.