位置:成果数据库 > 期刊 > 期刊详情页
选择性计算的快速非局部均值图像去噪
  • ISSN号:1001-0548
  • 期刊名称:《电子科技大学学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]攀枝花学院数学与计算机学院,四川攀枝花617000, [2]成都理工大学地球探测与信息技术教育部重点实验室,成都610059
  • 相关基金:国家自然科学基金青年科学基金(61202195/F020502);四川省教育厅科研基金(13ZB0212)
中文摘要:

针对非局部均值(NLM)图像去噪算法度量像素间的相似性计算强度高的问题,提出了一种选择性计算的快速NLM去噪方法。在图像块像素灰度值向量空间距离计算时,利用L2范数逐次消元法,只需在图像积分图上通过少量加法运算即可剔除大量相似性低的像素点,有效地减少计算强度。根据图像空间相关性强的特点,提出了基于patch测地线距离的动态调整搜索区域的方法。实验结果表明,与其他经典算法相比,该方法获得了较好的加速,也提升了NLM算法的去噪性能。

英文摘要:

A fast nonlocal means (NLM) image denoising method with selective calculation is proposed to solve the problem that the computational cost of similarity weights is high. By using L2 Norm successive elimination, a large number of pixels of low similarity van be rejected through a small amount of additive operations on integral image, and the massive calculation on measuring similarity can be effectively reduced. According to spatial coherence in the image domain, an approach for adaptive search area based on patch geodesic distance is proposed. Experimental results demonstrate that the proposed method, compared with the state-of-the-art algorithms, can not only accelerate the nonlocal means algorithm, but also elevate the image quality.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子科技大学学报》
  • 北大核心期刊(2011版)
  • 主管单位:国家教育部
  • 主办单位:电子科技大学
  • 主编:周小佳
  • 地址:成都市成华区建设北路二段四号
  • 邮编:610054
  • 邮箱:xuebao@uestc.edu.cn
  • 电话:028-83202308
  • 国际标准刊号:ISSN:1001-0548
  • 国内统一刊号:ISSN:51-1207/T
  • 邮发代号:62-34
  • 获奖情况:
  • 全国优秀科技期刊,第二届全国优秀科技期刊二等奖,两次获国家新闻出版署、国家教委“全国高校自然科...,中国期刊方阵双百期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:12314