位置:成果数据库 > 期刊 > 期刊详情页
一种基于k-means聚类和半监督学习的医学图像分割算法
  • ISSN号:1006-0464
  • 期刊名称:《南昌大学学报:理科版》
  • 时间:0
  • 分类:TP751[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]南昌大学信息工程学院,江西南昌330031
  • 相关基金:国家自然科学基金项目(61363046/F020502)
中文摘要:

医学图像分割是计算机视觉和图像处理领域近年来研究的热点问题之一。一种基于k-means聚类和半监督学习的医学图像分割新算法被提出。在k-means聚类模型中,相似度函数是关系到聚类效果好坏的关键因素。所使用的相似度函数通过基于side-information的半监督学习方法来确定;确定后的相似度函数又被运用回k-means聚类模型中来实现对医学图像的分割。为了检验该算法效果,脑部肿瘤患者的磁共振图像被运用在实验中。分析结果表明:该算法在本文所采用的实例中能获得优于传统算法的分割效果。

英文摘要:

Medical Image Segmentation is one of the most popular applications in contemporary computer vision and image processing fields. A novel algorithm based on k-means clustering and semi-supervised learning was presented in this study. The similarity function is one of the most important factors in clustering algorithms. It was determined via a semi-supervised learning process based on side-information in k-means method in our study. The learned similarity function was thereafter incorporated in the clustering model to differentiate tumor pixels from non-tumor pixels. In order to evaluate the presented algorithm,experiments incorporating MRI from patients with brain tumor were conducted as well. The superiority of the introduced algorithm over several existing ones was demonstrated therein.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《南昌大学学报:理科版》
  • 中国科技核心期刊
  • 主管单位:南昌大学
  • 主办单位:南昌大学
  • 主编:谢明勇
  • 地址:南昌市南京东路235号南昌大学期刊社
  • 邮编:330047
  • 邮箱:NCDL@chinajournal.net.cn
  • 电话:0791-88305805
  • 国际标准刊号:ISSN:1006-0464
  • 国内统一刊号:ISSN:36-1193/N
  • 邮发代号:44-19
  • 获奖情况:
  • 2004年国家教育部优秀科技期刊,2006年首届中国高校特色科技期刊,2009年第四届华东地区优秀期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),波兰哥白尼索引,德国数学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:5092