设R=+n∈N0Rn(R=R0[R1])是分次Noether交换环,(R0,m0)是一个局部环,R+=+n∈NRn;设N是一个有限生成Z-分次R-模,这里N、N0、Z分别表示全体正整数、全体非负整数和全体格致所构成的集合.令h=sup{i∈Z|HR+^i(N)不是Artin模}.Dibaei和Nazari证明了HR+^h(N)是tame模.我们将该结果推广到了广义分次局部上同调模的情形.
Assume that R = +n∈N0Rn(R=R0[R1]) is a homogeneous graded Noetherian ring, and (R0,m0) is a local ring. Set R+ = =+n∈NRn. Let N be a finitely generated Z-graded R-module. N, No and Z denote the set of all positive integers, non-negative integers and inte- Hi Artinian}. Dibaei and Nazari proved gers, respectively. We set h = sup{i ∈ Z||HR+^i(N) is not that HR+^h (N) is tame. In this paper, we generalize it to tile generalized local cohomology case.