记D∈C为单位圆盘,B^p={z∈C^n:^nΣi=1|zi|^p〈1},1〈p〈+∞.该文证明了若f∈Hm(D,B^p),则|■||f||(z)|≤(m|z|^m-1)/(1-|z|^2m)(1-||f(z)||^2),z∈D.同时,当p为偶数时,该文也讨论了相应的极值问题,所得结论推广了一些相关结果.
Let D be the unit disk in C, B^p ={z∈C^n:^nΣi=1|zi|^p〈1},1〈p〈+∞.In this note, it is proved that if f∈Hm(D,B^p), then |■||f||(z)|≤(m|z|^m-1)/(1-|z|^2m)(1-||f(z)||^2),z∈D.The extremal problem is also discussed when p is an even number. This result extends some related results on schwarz lemma.