让 K 是在联合起来的磁盘的规范的凸的函数的熟悉的类。Keogh 和 Merkes 证明了著名结果是那最大 ? fK|a3−λa22|≤max ?{ 1/3 ,|λ−1|},λ? ,并且估计为每 λ 是锋利的。我们为在一个复杂 Banach 空格或在联合起来的 polydisk 上在联合起来的球定义在的类型 B 的伪凸的 mappings 的一个子类调查相应问题 ? n。这些结果的证明使用一些限制假设,在一建筑群的情况中,变量它自动地满足。
Let K be the familiar class of normalized convex functions in the unit disk. Keogh and Merkes proved the well-known result that maxf∈A |a3 - λa22| ≤ max{1/3, |λ - 1}, ,λ ∈ C, and the estimate is sharp for each ∈. We investigate the corresponding problem for a subclass of quasi-convex mappings of type B defined on the unit ball in a complex Banach space or on the unit polydisk in Cn. The proofs of these results use some restrictive assumptions, which in the case of one complex variable are automatically satisfied.