位置:成果数据库 > 期刊 > 期刊详情页
基于拓展稀疏表示模型和LC-KSVD的人脸识别
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:长沙理工大学计算机与通信工程学院,长沙410114
  • 相关基金:国家自然科学基金(No.61202439); 湖南省教育厅优秀青年项目(No.12B003); 湖南省交通运输厅科技进步与创新项目(No.201334)
中文摘要:

为了提高人脸的识别率和识别速度及其识别的鲁棒性,提出了基于拓展稀疏表示模型和LC-KSVD(Label Consist K-SVD)的人脸识别算法。针对字典学习中只包含表示能力没有包含类别信息的问题,在原始的稀疏表示模型中添加了残差向量作为系数修正向量,使得拓展稀疏表示模型具有更强的鲁棒性;在字典学习中添加稀疏编码和分类器参数约束项,通过字典学习同时更新稀疏编码和分类器参数,使字典中包含很好的表示能力和判别分类能力。实验结果表明,基于拓展稀疏表示模型和LC-KSVD的人脸识别具有高识别率和低识别速度,并且有很好的鲁棒性。

英文摘要:

To improve the face recognition rate, speed and robustness, this paper proposes a face recognition algorithmbased on extended sparse representation model and LC-KSVD(Label Consist K-SVD). For solving the problem that dictionarylearning only contains representation ability but no class information, the algorithm adds residual vector as coefficientamending vector into original sparse representation model, making the extended model have stronger robustness.The algorithm also adds sparse coding and classifier parameter constraints into the process of dictionary learning andupdates sparse coding and classifier parameters in the process, making the dictionary possess good representation and discriminationability. The experimental results show that the algorithm has high recognition rate, low recognition speed andgood robustness.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887