位置:成果数据库 > 期刊 > 期刊详情页
基于子空间追踪的人脸识别
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:长沙理工大学计算机与通信工程学院,长沙410114
  • 相关基金:国家自然科学基金青年项目(No.61202439); 湖南省教育厅优秀青年项目(No.12B003);湖南省教育厅一般项目(No.12C0011); 湖南省交通运输厅科技进步与创新项目(No.201334)
中文摘要:

针对现有的基于稀疏表示的人脸识别方法没有更新优化选择的原子的问题,提出一种基于子空间追踪的人脸识别方法。在稀疏编码过程中的原子选择步骤中,引入回溯迭代优化思想和多原子选择方案,通过移除可信度较低的原子来更新优化候选支撑向量中选择的原子,使选择的原子与待识别人脸图像具有最相似的结构,从而在该原子上的稀疏编码系数具有较好的人脸重构能力。实验证明,与基于正交匹配追踪(OMP)算法和基于OMP-cholesky算法的人脸识别相比,该算法在ORL和Yale B人脸数据库上的算法复杂度较低且识别率均提高了约5%。

英文摘要:

Against the disadvantage of haven't update selected atoms in existing face recognition method based on sparse representation, this paper proposes a face recognition based on subspace pursuit. This algorithm introduces back iterative optimization method and polyatomic options in the atomic choice in sparse coding, by removing the candidate atoms with low credibility to make sure that the chosen atoms have the most similar structure with the identifying face image, so the sparse coding coefficient can reconstruct faces well. The experimental results show that this algorithm has lower algorithm complexity and boosts about 5% recognition rate on ORL and Yale B face database compared with Orthogonal Matching Pursuit algorithm(OMP)and the OMP-cholesky algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887