位置:成果数据库 > 期刊 > 期刊详情页
基于分段曲线模型的铁路轨道检测算法
  • ISSN号:1672-7029
  • 期刊名称:《铁道科学与工程学报》
  • 时间:0
  • 分类:U298.12[交通运输工程—交通运输规划与管理;交通运输工程—道路与铁道工程]
  • 作者机构:[1]兰州交通大学自动化与电气工程学院,甘肃兰州730070
  • 相关基金:国家自然科学基金资助项目(61164010)
作者: 郭碧, 董昱[1]
中文摘要:

针对现有铁路轨道检测识别算法的准确性和鲁棒性不高的问题,提出一种基于直线和双曲线相结合的分段曲线模型实现轨道线的检测、跟踪与验证。本算法首先依据轨道图像的边缘信息,通过多约束条件下的Hough变换初步检测轨道位置,确定轨道线消隐边界并标定近远景区域。然后,在近景区域,采用直线模型实现前方直轨拟合;在远景区域,融合轨间距离、轨道方向和像素灰度等先验知识构造边界置信度函数,设定可漂移窗口搜索算法完成特征点提取,以最小二乘法进行双曲线模型拟合。最后,依据模型切换及窗口搜索策略完成轨道线的跟踪。测试结果表明:该算法不仅较好地解决了弯轨描述问题,而且提高了检测的准确性和鲁棒性。

英文摘要:

Aiming at the problem that the accuracy and robustness of the existing railway track detection and recognition algorithm are not high, a piecewise curve model based on the combination of linear and hyperbolic curves is proposed to realize the detection, tracking and verification of the railway line. Firstly, according to the edge information of the track image, this algorithm uses Hough transform under multiple constraint conditions todetect the position of the track, and determines the hidden position of the track, and calibrates the near and far area.Secondly, linear model is adopted to realize the fitting of front straight rail in the near region. In the far area, the track confidence function is constructed fusing the prior knowledge of the distance between the track, the track direction and pixel intensity and so on. At the same time, the drift window search rules are set up to complete the extraction of feature points, and the least squares method is used to complete the hyperbolic model. Finally, based on the model switching and the window searching strategy, the tracking of the railway line is completed. The test results show that the algorithm not only solves the problem of curved track description, but also improves the accuracy and robustness of the detection.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《铁道科学与工程学报》
  • 北大核心期刊(2011版)
  • 主管单位:
  • 主办单位:中南大学 中国铁道学会
  • 主编:余志武
  • 地址:长沙市韶山南路22号
  • 邮编:410075
  • 邮箱:JRSE@mail.csu.edu.cn
  • 电话:0731-82655133
  • 国际标准刊号:ISSN:1672-7029
  • 国内统一刊号:ISSN:43-1423/U
  • 邮发代号:42-59
  • 获奖情况:
  • 国内外数据库收录:
  • 美国化学文摘(网络版),中国中国科技核心期刊,中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:5570