介绍了强π-正则一般环(未必有单位元)的概念并考虑了它的一些扩张.给出了强π-正则一般环的2个等价刻画,即,是强π-正则一般环当且仅当对于每个x∈I,存在n≥1以及y,z∈I,使得x^n=x^n+1y=zx^n+1当且仅当I中的每个元都是强π-正则的.还考虑了强π-正则一般环上的上三角矩阵一般环和平凡扩张,证明了强π-正则一般环上的上三角矩阵一般环仍是强π-正则的并且其平凡扩张是强clean的.
The concept of the strongly π-regular general ring (with or without unity) is introduced and some extensions of strongly π-regular general rings are considered. Two equivalent characterizations on strongly π- regular general rings are provided. It is shown that I is strongly π-regular if and only if, for each x ∈I, x^n =x^n+1y = zx^n+1 for n ≥ 1 and y, z ∈ I if and only if every element of I is strongly π-regular. It is also proved that every upper triangular matrix general ring over a strongly π-regular general ring is strongly π-regular and the trivial extension of the strongly π-regular general ring is strongly clean.