设R为一个环,M为一个右R-模.若每个从M的单子模到M的同态都可以开拓为M的自同态,则称M为一个极小拟内射模.若每个单的右R-模都可以嵌入M,则称M为一个强Kasch模.本文研究了这两类模的一些刻画和性质.
Let R be a ring and M a right R-module. M is said to be minimal quasi-injective if every homomorphism from a simple submodule of M to M can be extended to an endomorphism of M. M is said to be strongly Kasch if every simple right R-module embeds in M. Some characterizations and properties of these two classes of modules are investigated.