位置:成果数据库 > 期刊 > 期刊详情页
改进的耗散量子粒子群优化算法及其应用
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]桂林电子科技大学管理学院,广西桂林255049
  • 相关基金:国家自然科学基金资助项目(70862001)
中文摘要:

针对量子粒子群优化算法(QPSO)存在着保持种群多样性差、容易陷入局部最优等缺陷,将耗散操作算子引入到QPSO量子角度更新中,提出了改进的耗散量子粒子群优化算法(DQPSO)。为验证算法的有效性,将DQPSO算法应用于标准函数优化问题。仿真结果表明,改进的耗散量子粒子群算法的优化性能优于传统的量子进化算法(QEA)和QPSO算法。可见,在量子角度更新策略中引入耗散操作算子能够使算法更好地保持种群的多样性、摆脱局部最优的限制、提高算法的搜索能力。

英文摘要:

As quantum particle swarm optimization( QPSO) existing the defects that can’t keep the diversity of the swarm much better and easy to local the optimum,to overcome the weaknesses,dissipation operator was induced into the quantum angle update strategy,and then proposed a modified dissipation quantum particle swarm optimization( DQPSO) . The simulated results in solving benchmark function optimization problems show that DQPSO is superior to traditional quantum evolutionary algorithm ( QEA) and QPSO. We can conclude that dissipation operator is valid for keeping the diversity of the swarm and avoiding the algorithm lie in the local optimum and improving the search ability of the algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049