针对用户评分数据稀疏性问题,在对项目进行聚类基础上,文章提出了基于属性聚类的项目评分预测推荐算法。算法从项目属性特征相似性分析出发,利用K—Means聚类算法对项目进行聚类。对于未评分项目找到其所属的类簇;利用用户对类簇中其它项目的评分预测该用户对未评分项目的评分,达到降低数据稀疏性目的;最后结合协同过滤思想为用户提供推荐服务。实验结果表明,与基于项目评分预测的推荐算法相比,文章的算法推荐精度显著提高。