位置:成果数据库 > 期刊 > 期刊详情页
Design and optimization in multiphase homing trajectory of parafoil system
  • ISSN号:1672-7207
  • 期刊名称:《中南大学学报:自然科学版》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程] N94[自然科学总论—系统科学]
  • 作者机构:[1]Department of Physics and Electronics, Anhui Science and Technology University, Fengyang 233100, China, [2]College of Computer and Control Engineering, Nankai University, Tianjin 300071, China
  • 相关基金:Project(61273138) supported by the National Natural Science Foundation of China,Projects(KJ2016A169, KJ2015A242) supported by the University Natural Science Research Key Project of Anhui Province, China,Project(ZRC2014444) supported by the Talents Program of Anhui Science and Technology University, China
中文摘要:

In order to realize safe and accurate homing of parafoil system,a multiphase homing trajectory planning scheme is proposed according to the maneuverability and basic flight characteristics of the vehicle.In this scenario,on the basis of geometric relationship of each phase trajectory,the problem of trajectory planning is transformed to parameter optimizing,and then auxiliary population-based quantum differential evolution algorithm(AP-QDEA)is applied as a tool to optimize the objective function,and the design parameters of the whole homing trajectory are obtained.The proposed AP-QDEA combines the strengths of differential evolution algorithm(DEA)and quantum evolution algorithm(QEA),and the notion of auxiliary population is introduced into the proposed algorithm to improve the searching precision and speed.The simulation results show that the proposed AP-QDEA is proven its superior in both effectiveness and efficiency by solving a set of benchmark problems,and the multiphase homing scheme can fulfill the requirement of fixed-points and upwind landing in the process of homing which is simple in control and facile in practice as well.

英文摘要:

In order to realize safe and accurate homing of parafoil system, a multiphase homing trajectory planning scheme is proposed according to the maneuverability and basic flight characteristics of the vehicle. In this scenario, on the basis of geometric relationship of each phase trajectory, the problem of trajectory planning is transformed to parameter optimizing, and then auxiliary population-based quantum differential evolution algorithm (AP-QDEA) is applied as a tool to optimize the objective function, and the design parameters of the whole homing trajectory are obtained. The proposed AP-QDEA combines the strengths of differential evolution algorithm (DEA) and quantum evolution algorithm (QEA), and the notion of auxiliary population is introduced into the proposed algorithm to improve the searching precision and speed. The simulation results show that the proposed AP-QDEA is proven its superior in both effectiveness and efficiency by solving a set of benchmark problems, and the multiphase homing scheme can fulfill the requirement of fixed-points and upwind landing in the process of homing which is simple in control and facile in practice as well.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中南大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:中南大学
  • 主编:黄伯云
  • 地址:湖南长沙中南大学校本部
  • 邮编:410083
  • 邮箱:zngdxb@csu.edu.cn
  • 电话:0731-88879765
  • 国际标准刊号:ISSN:1672-7207
  • 国内统一刊号:ISSN:43-1426/N
  • 邮发代号:42-19
  • 获奖情况:
  • 首届全国优秀科技期刊评比一等奖,第二届全国优秀科技期刊评比一等奖,首届中国有色金属工业优秀科技期刊评比一等奖
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:20874