针对翼伞系统在归航过程中,控制电机工作异常致使控制性能发生变化,无法按原有规划轨迹到达目标点的问题,提出一种基于Gauss伪谱法的归航轨迹容错设计方法.首先根据翼伞系统控制特性的不同,分别建立了正常和单电机异常工作状态下的质点模型,并根据伞形参数确定了两种工作状态下的约束条件和目标函数;其次,利用Gauss伪谱法分别对两种工作状态下轨迹规划的最优控制问题求解,获得翼伞系统不同状态下的最优飞行轨迹.仿真结果表明,在约束情况下,翼伞系统无论在正常和单电机异常工作时都可以顺利到达目标点,获得高精度的飞行轨迹.
Since faults in the control motor change control characteristics, the parafoil system in the homing process cannot reach the target point in the original planned trajectory. To deal with this problem, we propose a fault-tolerance design for the homing trajectory by using the Gauss pseudo-spectral method. According to the control characteristic of the parafoil system, we build a normal model and a faulty model with one faulty motor. The constraint conditions and objective functions are respectively defined for the two models, in terms of the parafoil parameters. Using the Gauss pseudo-spectral method, we solve the optimal trajectory programming problem for the two models. The optimal flight trajectories of the parafoil system under different conditions are also obtained. Simulation results show that the parafoil system can reach the target point successfully under certain constraints, and obtain high-precision flight trajectory in normal operating conduction as well as when a motor fails.