位置:成果数据库 > 期刊 > 期刊详情页
基于P SO-RVM算法的发动机故障诊断
  • ISSN号:1006-7043
  • 期刊名称:《哈尔滨工程大学学报》
  • 时间:0
  • 分类:TP206.3[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]哈尔滨工程大学信息与通信工程学院,黑龙江哈尔滨150001, [2]哈尔滨理工大学电气与电子工程学院,黑龙江哈尔滨150080
  • 相关基金:国家自然科学基金资助项目(61175126);中央高校基本科研业务费专项资金资助项目( HEUCFZ1209);教育部博士点基金资助项目(20112304110009).
中文摘要:

针对汽车发动机失火故障问题,提出一种新的智能诊断方法。建立了汽车尾气中各气体的体积分数与失火故障原因的映射关系,对归一化处理的数据进行机器训练,将训练好的相关向量机模型应用于故障分类诊断。算法中的惩罚因子和径向基核函数参数对分类准确率有着很大的影响,利用粒子群算法对超参数进行了优化。将优化训练后的相关向量机模型与目前较成熟的遗传优化的神经网络及支持向量机方法进行了对比,实验结果表明新方法比传统方法在诊断精度和鲁棒性方面均有一定的提高。

英文摘要:

To solve the problems of the misfiring errors of an automobile engine, the authors, put forward a new in-telligent fault diagnosis method. A mapping relation is established the volume fraction of gases in the exhaust of the automobile and the cause of the misfire. Machine training is applied to normalized data and the trained relevance vector machine model is applied to the fault classification and diagnosis. The penalty factor and the RBF kernel pa-rameters in the algorithm greatly affect the classification accuracy. The particle swarm algorithm is used to optimize the super-parameters;in addition, the relevance vector machine model having experienced optimization training is compared with the presently mature genetic optimized neural network and support vector machine method. The ex-perimental results show that the new method improves the diagnosis accuracy and robustness.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《哈尔滨工程大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国工业和信息化部
  • 主办单位:哈尔滨工程大学
  • 主编:杨士莪
  • 地址:哈尔滨市南岗区南通大街145号1号楼
  • 邮编:150001
  • 邮箱:xuebao@hrbeu.edu.cn
  • 电话:0451-82519357
  • 国际标准刊号:ISSN:1006-7043
  • 国内统一刊号:ISSN:23-1390/U
  • 邮发代号:14-111
  • 获奖情况:
  • 工信部科技期刊评比"优秀期刊奖",中国高校科技期刊评比"精品期刊奖","北方十佳期刊奖",首届黑龙江省政府出版奖--优秀期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:11823