位置:成果数据库 > 期刊 > 期刊详情页
基于动态学习策略的群集蜘蛛优化算法
  • ISSN号:1001-0920
  • 期刊名称:《控制与决策》
  • 时间:0
  • 分类:TP273[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]东北电力大学信息工程学院,吉林省吉林市132012, [2]哈尔滨工程大学自动化学院,哈尔滨150001
  • 相关基金:国家自然科学基金项目(61175126); 东北电力大学博士科研启动基金项目(BSJXM-2013-20).
中文摘要:

为了提高群集蜘蛛优化(SSO)算法的性能,提出一种基于动态学习策略的群集蜘蛛优化(DSSO)算法.该算法通过群体协作过程中学习因子的动态选择,平衡算法的搜索能力和勘探能力;采用随机交叉策略和云模型改进协作过程个体更新方式,在维持种群多样性的同时尽量提高收敛速度.基于标准测试函数的仿真实验表明,DSSO算法可有效避免早熟收敛,在收敛速度和收敛精度上较标准SSO算法和其余4种较具代表性的优化算法均有显著提高.

英文摘要:

In order to improve the performance of social spider optimization(SSO) algorithm,a social spider optimization algorithm with the dynamic learning strategy(DSSO) is proposed.In this algorithm,a dynamic selection mechanism for the learning factor in population cooperation is applied to balance solution accuracy and search speed.A manner to update individual combining randomized crossover strategy and cloud theory is proposed to improve the collaboration manner,which can maintain the diversity of the population as much as possible and improve searching speed.Experimental results on benchmark functions show that the DSSO algorithm improves convergence property and robustness compared with the representative four algorithms.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《控制与决策》
  • 北大核心期刊(2011版)
  • 主管单位:中华人民共和国教育部
  • 主办单位:东北大学
  • 主编:张嗣瀛 王福利
  • 地址:沈阳市东北大学125信箱
  • 邮编:110004
  • 邮箱:kzyjc@mail.neu.edu.cn
  • 电话:024-83687766
  • 国际标准刊号:ISSN:1001-0920
  • 国内统一刊号:ISSN:21-1124/TP
  • 邮发代号:8-51
  • 获奖情况:
  • 1997年被评为辽宁省优秀编辑部,1999年期刊影响因子在信息与系统类期刊中排名第二位
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:32961