研究受Peierls-Nabarro力作用的非线性热弹耦合Sine-Gordon型系统的动力行为.利用算子半群理论证明了在一定的初边界条件下系统存在连续解,利用算子半群分解技巧构造了渐近紧的不变吸收集,进而证明了系统存在整体吸引子.
The dynamical behavior of a class of coupled system to the Sine-Gordon equations with the Peierls-Nabarro force is considered in this paper.First,the existence of the continuous solution is shown in the semi-group approach,under the certain initial-boundary value condition.Then,using the decomposing technique of semi-group,we construct the compact positively invariant sets,and the global attractor is proved.