位置:成果数据库 > 期刊 > 期刊详情页
基于SVD的抗差UKF算法在短时交通流状态估计中的应用
  • ISSN号:1000-565X
  • 期刊名称:《华南理工大学学报:自然科学版》
  • 时间:0
  • 分类:U491[交通运输工程—交通运输规划与管理;交通运输工程—道路与铁道工程]
  • 作者机构:华南理工大学土木与交通学院,广东广州510640
  • 相关基金:国家自然科学基金资助项目(61263024)
中文摘要:

针对城市区域快速路网,以实现交通流运行状态实时估计为目标,建立宏观交通流状态空间模型,在实现交通流状态估计的同时,更新交通流模型参数,提高交通流模型的适应性和准确性.然后提出了基于奇异值分解(SVD)的优化抗差无损卡尔曼滤波(UKF)算法,用奇异值分解代替标准UKF的Cholesky分解,解决了协方差矩阵非正定时滤波计算不能持续的问题,同时,该算法根据观测协方差矩阵是否病态选择抗差因子,对增益矩阵和观测协方差矩阵进行自适应计算,进而抑制由于模型较高的非线性带来的误差.通过实验证明,文中所提算法避免了扩展卡尔曼滤波(EKF)算法的滤波发散问题,能准确跟踪交通流的变化趋势,提高交通流状态估计的稳定性和精度.

英文摘要:

In order to realize the real-time traffic flow state estimation of the regional freeway network in cities, a macroscopic traffic flow state space model is constructed. This model helps to estimate the traffic flow states and up- date the model parameters, and it can improve the adaptability and accuracy of the traffic flow model. Then, the SVD ( Singular Value Decomposition) -based optimized robust UKF ( Unscented Kalman Filter) algorithm is pro- posed. In the algorithm, the singular value decomposition is adopted to replace the Cholesky decomposition, thus solving the problem that the filtering can't continue when the covariance matrix is non-positive. Meanwhile, differ- ent strategies are chosen according to whether the observation covariance matrix is pathological, and both the gain matrix and the observation covariance matrix are adaptively calculated. Furthermore, the error caused by the high nonlinearity of the constructed model is inhibited. Experimental results show that the proposed algorithm can avoid the filtering divergence of the EKF ( Extended Kalman Filter) algorithm and can accurately track the trend of the traffic flow, thus improving the stability and precision of the traffic flow state estimation.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《华南理工大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:国家教育部科技司
  • 主办单位:华南理工大学
  • 主编:李元元
  • 地址:广州市天河区五山路华南理工大学17号楼
  • 邮编:510640
  • 邮箱:journal@scut.edu.cn
  • 电话:
  • 国际标准刊号:ISSN:1000-565X
  • 国内统一刊号:ISSN:44-1251/T
  • 邮发代号:46-174
  • 获奖情况:
  • 本学报荣获1996年国家教委系统优秀科技期刊二等奖...,1999年荣获全国优秀高校自然科学学报及教育部优秀...,2001年荣获广东省优秀期刊奖和广东省优秀科技期刊...,2004年获全国高校优秀科技期刊二等奖,2006年获首届教育部优秀科技期刊奖,2008年荣获第二届教育部优秀科技期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:22954