该文讨论如下空间非均匀的Boltzmann方程 偏df/偏dt+ε·△↓f(t,x,ε)=Q(f,f) 在角截断的硬位势情况下,对初值接近行波Maxwell分布时,作者利用一种新的迭代方法,证明了该方程存在一个非负的永久型解.因此在空间区域无界的情形下,该文对Villani的猜测给出了否定的回答.
In this paper, the authors discuss the following spatially inhomogeneous Boltzmann equation 偏df/偏dt+ε·△↓f(t,x,ε)=Q(f,f) By means of a new iteration method, the existence of a positive eternal solution with initial data close to a travelling Maxwellian is proved in the case of hard potentials with angular cutoff. Hence, the authors give a negative answer to the conjecture of Villani in the case of unbounded space domain.