该文研究了一维具有周期初值Landau-Lifshitz-Maxwell方程的整体光滑解的存在唯一性.为得到一致先验估计,作者利用了|Z(x,t)|=1和{Z,Z_x,Z×Z_x}构成R~3的一组基的办法.
The present paper concerns itself with the existence and uniqueness of global smooth solution to the periodic initial value problem of tile Landau-Lifshitz equation without Gilbert damping terms but with quasi-static Maxwell equations in one dimension. To establish the uniform estimates, the authors use some identities resulting from the fact |Z+ = 1 and the fact that the vectors {Z. Zx, Z ×Zx} form an orthogonal base of the sDace R3.