有最大的率和最小的延期的复杂直角的图案是为时空的一个开的问题块代码。最大的率能有效地在空间尺寸把符号传给最孤独的距离;并且最小的延期最不在时间尺寸正在译码延期。许多作者与天线 n = 4k (k ∈ N ) 为 space-timeblock 代码关于复杂直角的图案观察了那,它的最小的延期为 n = 4k 与那一样 - 1。然而,任何一个都不能证明它。在这篇论文,我们使用 Hadamard 矩阵的特征证明这个性质完成这个空缺。
The complex orthogonal designs with maximal rates and minimal delays is an open problem for space-time block code. Maximal rate can effectively transmit symbols to the lonest distance in the space dimension ; and minimal delay is the least decoding delay in the time dimension. Many authors have observed that regarding the complex orthogonal designs for space-time block codes with the antennas n = 4k ( k ∈ N ), its minimal delay is the same as that for n - 4k -1. However none was able to prove it. In this paper, we use the characteristics of Hadamard matrix to prove this property to fulfill this vacancy.