该文讨论如下问题的正解的存在性与非存在性(P){-△u+V(x)u+λФ(x)|u|^q-2u=f(u) in R^3 -△Ф=|u|^q1lim |x|→+∞ Ф(x)=01 lim|x|→+∞ u(x)=0,这里λ〉0是参数,5/3≤q〈5,f(s)在无穷远处关于s是渐进线性的.在较简单的假设下,我们证明了:在λ较小时,问题(P)至少有一个正解,在λ较大时,问题(P)不存在非平凡解.
In this paper,we investigate the existence and non-existence of positive solutions of the following problem (P){-△u+V(x)u+λФ(x)|u|^q-2u=f(u) in R^3 -△Ф=|u|^q1lim |x|→+∞ Ф(x)=01 lim|x|→+∞ u(x)=0,whereλ0 is a parameter,5/3≤q 5,f(s) is asymptotically linear with respect to s at infinity. Under some simple assumptions on V and f,we prove that the problem(P) has at least one positive solution forλsmall and has no nontrivial solution forλlarge.