欢迎您!
东篱公司
退出
申报数据库
申报指南
立项数据库
成果数据库
期刊论文
会议论文
著 作
专 利
项目获奖数据库
位置:
成果数据库
>
期刊
> 期刊详情页
New proofs of two representations and minor of generalized inverse AT,S ((2))
ISSN号:0096-3003
期刊名称:Applied Mathematics and Computation
时间:2011.3.3
页码:6309-6314
相关项目:若干矩阵方程求解、扰动和预处理的研究与应用
作者:
Sheng, Xingping|Chen, Guoliang|
同期刊论文项目
若干矩阵方程求解、扰动和预处理的研究与应用
期刊论文 28
同项目期刊论文
LEAST SQUARES (P,Q)-ORTHOGONAL SYMMETRIC SOLUTIONS OF THE MATRIX EQUATION AND ITS OPTIMAL APPROXIMAT
Explicit solutions to the quaternion matrix equations X - AXF = C and X - A(X)over-tildeF = C
An iterative method for the least squares solutions of the linear matrix equations with some constra
On some new bounds for eigenvalues of the Hadamard product and the Fan product of matrices
Some inequalities for the nonlinear matrix equation : Trace, determinant and eigenvalue
Norm inequalities for accretive–dissipative operator matrices
ON SOLUTIONS OF QUATERNION MATRIX EQUATIONS XF - AX = BY AND XF - A(X)over-tilde = BY
Iterative solutions to coupled Sylvester-transpose matrix equations
An alternating LHSS preconditioner for saddle point problems
Two inequalities for the Hadamard product of matrices
An efficient algorithm for solving extended Sylvester-conjugate transpose matrix equations
Innovation based on Gaussian elimination to compute generalized inverse AT,S-(2)
ON THE NONLINEAR MATRIX EQUATION X-s + A*F(X)A = Q with s >= 1
Some inequalities for the Hadamard product of an M-matrix and an inverse M-matrix
A New Method for the Bisymmetric Minimum Norm Solution of the Consistent Matrix Equations A(1)XB(1)
Some properties of the nonlinear matrix equation X-s+A*X(-t)A = Q
On the Hermitian Positive Definite Solutions of Nonlinear Matrix Equation X-s + A*X-t1 A plus B*X-t2
结构动力模型更新中带有子矩阵约束的逆特征值问题
矩阵方程AXB+CXTD=E的可解性
矩阵方程AXA^T=B的对称反自反最小二乘解
反五对角与拟反五对角方程组的追赶法
ON THE NONLINEAR MATRIX EQUATION Xs + A*F(X)A = Q with s ≥ 1
On the Hermitian Positive Definite Solutions of the Nonlinear Matrix Equation X^s -A^*X^-tA = Q with Perturbation Estimates
矩阵方程XA+YB=C的对称次反对称解及最佳逼近
鞍点问题迭代算法的进一步研究
鞍点问题的修正对称超松弛迭代算法