欢迎您!
东篱公司
退出
申报数据库
申报指南
立项数据库
成果数据库
期刊论文
会议论文
著 作
专 利
项目获奖数据库
位置:
成果数据库
>
期刊
> 期刊详情页
ON SOLUTIONS OF QUATERNION MATRIX EQUATIONS XF - AX = BY AND XF - A(X)over-tilde = BY
ISSN号:0252-9602
期刊名称:Acta Mathematica Scientia
时间:2012.9.9
页码:1967-1982
相关项目:若干矩阵方程求解、扰动和预处理的研究与应用
作者:
Song Caiqin|Chen Guoliang|Wang Xiaodong|
同期刊论文项目
若干矩阵方程求解、扰动和预处理的研究与应用
期刊论文 28
同项目期刊论文
LEAST SQUARES (P,Q)-ORTHOGONAL SYMMETRIC SOLUTIONS OF THE MATRIX EQUATION AND ITS OPTIMAL APPROXIMAT
Explicit solutions to the quaternion matrix equations X - AXF = C and X - A(X)over-tildeF = C
An iterative method for the least squares solutions of the linear matrix equations with some constra
On some new bounds for eigenvalues of the Hadamard product and the Fan product of matrices
Some inequalities for the nonlinear matrix equation : Trace, determinant and eigenvalue
Norm inequalities for accretive–dissipative operator matrices
Iterative solutions to coupled Sylvester-transpose matrix equations
New proofs of two representations and minor of generalized inverse AT,S ((2))
An alternating LHSS preconditioner for saddle point problems
Two inequalities for the Hadamard product of matrices
An efficient algorithm for solving extended Sylvester-conjugate transpose matrix equations
Innovation based on Gaussian elimination to compute generalized inverse AT,S-(2)
ON THE NONLINEAR MATRIX EQUATION X-s + A*F(X)A = Q with s >= 1
Some inequalities for the Hadamard product of an M-matrix and an inverse M-matrix
A New Method for the Bisymmetric Minimum Norm Solution of the Consistent Matrix Equations A(1)XB(1)
Some properties of the nonlinear matrix equation X-s+A*X(-t)A = Q
On the Hermitian Positive Definite Solutions of Nonlinear Matrix Equation X-s + A*X-t1 A plus B*X-t2
结构动力模型更新中带有子矩阵约束的逆特征值问题
矩阵方程AXB+CXTD=E的可解性
矩阵方程AXA^T=B的对称反自反最小二乘解
反五对角与拟反五对角方程组的追赶法
ON THE NONLINEAR MATRIX EQUATION Xs + A*F(X)A = Q with s ≥ 1
On the Hermitian Positive Definite Solutions of the Nonlinear Matrix Equation X^s -A^*X^-tA = Q with Perturbation Estimates
矩阵方程XA+YB=C的对称次反对称解及最佳逼近
鞍点问题迭代算法的进一步研究
鞍点问题的修正对称超松弛迭代算法
期刊信息
《数学物理学报:B辑英文版》
中国科技核心期刊
主管单位:
主办单位:中科院武汉物理与数学研究所
主编:吴文俊
地址:武昌小洪山中科院武汉物理与数学研究所
邮编:430071
邮箱:actams@wipm.ac.cn
电话:027-87199206
国际标准刊号:ISSN:0252-9602
国内统一刊号:ISSN:42-1227/O
邮发代号:38-215
获奖情况:
中国期刊方阵“双效”期刊
国内外数据库收录:
俄罗斯文摘杂志,美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国剑桥科学文摘,美国科学引文索引(扩展库),日本日本科学技术振兴机构数据库,中国中国科技核心期刊
被引量:339